Equations:

Force of Gravity:

$$
F_{g}=\frac{G \cdot m_{1} \cdot m_{2}}{d^{2}}
$$

m_{1} and $m_{2}=$ masses
$d=$ distance between centers of gravity
Acceleration of Gravity:
$a_{g}=\frac{G \cdot m}{r^{2}}$
$m=$ mass of the planet
$r=$ radius of the planet

Tangential Velocity: $\quad v_{t}=\sqrt{\frac{G \cdot m}{r}} \quad \begin{aligned} & m=\text { mass in the orbit center } \\ & r=\text { radius of the orbit }\end{aligned}$

Definitions:

Tangential Velocity:

Velocity of a satellite as it moves in its orbit.

Time Period:

Time for a satellite to complete one revolution.

Data:

$\mathbf{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Earth Mass $=5.98 \times 10^{24} \mathrm{~kg}$
Earth Radius $=6.38 \times 10^{6} \mathrm{~m}$

Name	$\underline{\text { Symbol }}$	$\underline{\text { Unit }}$	Notes
Gravitational Force	F_{g}	Newton	
Gravitational Acceleration	a_{g} or g	$\mathrm{~m} / \mathrm{s}^{2}$	
Tangential Velocity	v_{t}	$\mathrm{~m} / \mathrm{s}$	
Distance	d	meters	
Radius	r	meters	
Time Period	T	second/day/year	
Mass	m	kilogram	

Helpful Equations:

$$
d=\frac{1}{2} \cdot a \cdot t^{2} \quad v_{t}=\frac{2 \cdot \pi \cdot r \cdot(\# r e v)}{t}
$$

