

Equations:			
Force of Gravity:	$F_g = \frac{G \cdot m_1 \cdot m_2}{d^2}$	m_1 and m_2 = masses d = distance between centers of gravity	
Acceleration of Gravity:	$a_g = \frac{G \cdot m}{r^2}$	m = mass of the planet r = radius of the planet	
Tangential Velocity:	$v_t = \sqrt{\frac{G \cdot m}{r}}$	m = mass in the orbit center r = radius of the orbit	

Definitions:

<u>Data:</u>

Tangential Velocity:

Velocity of a satellite as it moves in its orbit.

Time Period:

Time for a satellite to complete one revolution.

$G = 6.67 \text{ x } 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ Earth Mass = 5.98 x 10^{24} kg Earth Radius = 6.38 x 10^6 m

Name	<u>Symbol</u>	<u>Unit</u>	<u>Notes</u>
Gravitational Force	F_g	Newton	
Gravitational Acceleration	a_g or g	m/s ²	
Tangential Velocity	v_t	m/s	
Distance	d	meters	
Radius	r	meters	
Time Period	Т	second/day/year	
Mass	m	kilogram	

Helpful Equations:

$$d = \frac{1}{2} \cdot a \cdot t^2 \qquad \qquad v_t = \frac{2 \cdot \pi \cdot r \cdot (\# rev)}{t}$$